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1. Complex Algebra

The set of complex numbers is

C = {a + ib | b ∈ R, i2 = −1}.
Let z1, z2 ∈ C. Then z1 = x1 + iy1 and z2 = x2iy2 for some x1, y1, x2, y2 ∈ R.
Define addition and multiplication in C by

z1 + z2 = (x1 + x2) + i(y1 + y2);

z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2).

Thus to add or multiply complex numbers, treat i like a variable, add or multiply,
replace i2 with −1, and combine like terms.

One can show that these operations have the following properties:
(F1) a + b = b + a for every a, b ∈ C;
(F2) (a + b) + c = a + (b + c) for every a, b, c ∈ C;
(F3) there exists 0 ∈ C such that a + 0 = a for every a ∈ C;
(F4) for every a ∈ C there exists b ∈ C such that a + b = 0;
(F5) ab = ba for every a, b ∈ C;
(F6) (ab)c = a(bc) for every a, b, c ∈ C;
(F7) there exists 1 ∈ C such that a · 1 = a for every a ∈ C;
(F8) for every a ∈ C r {0} there exists c ∈ C such that ac = 1;
(F9) a(b + c) = ab + ac for every a, b, c ∈ C.

Together, these properties state that C is a field. Note that
• 0 = 0 + i0;
• 1 = 1 + i0;
• −(x + iy) = −x + i(−y) = −x− iy;
• (x + iy)−1 = x−iy

x2+y2 .
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2. Complex Geometry

Let z = x + iy be an arbitrary complex number. The real part of z is <(z) = x.
The imaginary part of z is =(z) = y. We view R as the subset of C consisting of
those elements whose imaginary part is zero.

We graph complex number on the xy-plane, using the real part as the first coor-
dinate and the imaginary part as the second coordinate. Under this interpretation,
the set C becomes a real vector space of dimension two, with scalar multiplication
given by complex multiplication by a real number. We call this vector space the
complex plane.

Thus the geometric interpretation of complex addition is vector addition.
Let z = x + iy be an arbitrary complex number. The conjugate of z is

z = x− iy.

This is the mirror image of z under reflection across the real axis. Note that

z + z = (x + iy) + (x− iy) = 2x = 2<(z).

The modulus of z is
|z| =

√
x2 + y2.

This is the length of z as a vector. Note that

zz = (x + iy)(x− iy) = x2 + y2 = |z|2.
The angle of z, denoted by ∠(z), is the angle between the vectors (1, 0) and (x, y)

in the real plane R2; this is well-defined up to a multiple of 2π.
Let r = |z| and θ = ∠(z). Then x = r cos θ and y = r sin θ. Define a function

cis : R → C by cis(θ) = cos θ + i sin θ.

Then z = r cis(θ); this is the polar representation of z.
Recall the trigonometric formulae for the cosine and sine of the sum of angles:

cos(A+B) = cos A cos B−sinA sinB and sin(A+B) = cos A sinB+sinA cos B.

Let z1 = r1 cis(θ1) and z2 = r2 cis(θ2). Then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

= r1r2 cis(θ1 + θ2).

Thus the geometric interpretation of complex multiplication is:
(a) The radius of the product is the product of the radii;
(b) The angle of the product is the sum of the angles.

Example 1. Let f : C → C be given by f(z) = 2z. Then f dilates the complex
plane by a factor of 2.

Example 2. Let f : C → C be given by f(z) = iz. Then f rotates the complex
plane by 90 degrees.

Example 3. Let f : C → C be given by f(z) = (1 + i)z. Note that |1 + i| =
√

2
and ∠(1+ i) = π

4 . Then f dilates the complex plane by a factors of
√

2 and rotates
it by 45 degrees.
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3. Complex Powers and Roots

A special case of complex multiplication is exponentiation by a natural number;
a simple proof by induction shows that

Theorem 1. (DeMoivre’s Theorem)
Let θ ∈ R. Then

(cis θ)n = cis(nθ).

Let z = r cis(θ) and let n ∈ N. Then zn = rn cis(nθ).
The unit circle in the complex plane is

U = {z ∈ C | |z| = 1}.
Note that if u1, u2 ∈ U, then u1u2 ∈ U.

Let ζ ∈ C and suppose that ζn = 1. We call ζ an nth root of unity. Note that if
ζ = cis(2π/n), then

ζn = cisn(2π/n) = cis(2πn/n) = cis(2π) = 1,

so nth roots of unity always exist. In fact, for k ∈ Z, ζk = cis(2πk/n) is also an
(thn) root of unity, since

(ζk)n = (ζn)k = 1k = 1.

Moreover, ζi = ζj if and only if i ≡ j (mod n), in particular, ζn = ζ0 = 1. Thus
there are exactly n distinct complex numbers which are nth roots of unity; they
form the set

Un = {ζk | ζ = cis(2π/n), k = 0, 1, . . . , n− 1}.
If α ∈ Un, we call α a primitive nth root of unity if αj 6= 1 for j = 1, . . . , n− 1.

If α is a primitive nth root of unity, then Un = {αk | k = 0, . . . , n− 1}.
If one graphs the nth roots of unity in the complex plane, the points lie on the

unit circle and they are the vertices of a regular n-gon, with one vertex always at
the point 1 = 1 + i0.

Let z = r cis(θ). Then z has exactly n distinct nth roots; they are

n
√

z = ζm n
√

r cis
( θ

n

)
, where ζ = cis

(2π

n

)
and m ∈ {0, . . . , n− 1}.

The algebraic importance of the complex numbers, and the original motivation
for their study, is exemplified by the next theorem. This was first conjectured in the
1500’s, but was not proven until the doctoral dissertation of Carl Friedrich Gauss
in 1799 at the age of 22. Incidentally, was the first to prove the constructibility of
a regular 17-gon, at an even earlier age.

Theorem 2. (The Fundamental Theorem of Algebra)
Every polynomial with complex coefficients has a zero in C.

From this, it follows that every polynomial with complex coefficients factors
completely into the product of linear polynomials with complex coefficients.
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4. Complex Analysis

The distance between complex number z1 and z2 is |z1 − z2|. This is standard
distance in the complex plane, and allows us to precisely define what it means
for a complex function to be continuous or differentiable. Moreover, the theory of
sequences and series carries over to the complex numbers.

We use the power series expansion of various familiar real-valued functions to
motivate the definitions of their complex analogs. In each case, one may use the
ratio test to see that the radius of convergence is infinite, so the functions are
defined on the entire complex plane.

Define the complex exponential function

exp : C → C by exp(z) =
∞∑

n=0

zn

n!
.

Define the complex sine function by

sin : C → C by sin(z) = z − z3

3!
+

z5

5!
− z7

7!
+ . . .

Define the complex cosine function by

cos : C → C by cos(z) = 1− z2

2!
+

z4

4!
− z6

6!
+ . . .

Note that exp, sin, and cos, when restricted to R ⊂ C, are defined so as to be
consistent with other definitions of these real functions. In particular, we still have
e = exp(1).

Define log : D → C to be an inverse function of exp, where

D = C r {x ∈ R | x < 0};
then log is continuous on D. Note that log(1) = e.

Let w, z ∈ C. We define wz by

wz = exp(z log(w)).

Thus exp(z) = ez.
Compute that

exp(iz) = cos(z) + i sin(z).
In particular, if z is the complex number iθ, where θ ∈ R, we have

Theorem 3. (Euler’s Theorem) Let θ ∈ R. Then

eiθ = cos θ + i sin θ.
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5. Exercises

The rectangular form of a complex number is z = a + bi.
The polar form of a complex number is z = r cis θ.

Exercise 1. Let z = 7− 2i and w = 5 + 3i.
Compute the following, expressed in rectangular form.

(a) z + w
(b) 3z − 8w
(c) zw
(d) z

w
(e) z and |z|

Exercise 2. Find the rectangular and polar forms of all sixth roots of unity.

Exercise 3. Find the rectangular and polar forms of all solutions to the equation
z6 − 8 = 0.

Exercise 4. Find the rectangular and polar forms of all solutions to the equation
z6 − a = 0, where a =

√
3 + i.
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